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2- and 3-parton correlators

• 2-parton correlators (quarks PDFs)
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• 3-parton correlators
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→ 4 independent (leading) functions for Γ = {γ+, γ+γ5, iσ
j+γ5}

(Jaffe, Ji, 1992)

→ Twist-3 effects



Parton pole matrix elements

• PPMEs: one of the 3 partons has vanishing (longitudinal) momentum

→ e.g., gluon pole matrix element (GPME): Φq
F(x, x′ = x)

• PPMEs can be used to describe SSAs

(Efremov, Teryaev, 1982, ... / Qiu, Sterman, 1991, ...)

• Large amount of recent work on PPMEs and SSAs

• Relation to TMDs (Boer, Mulders, Pijlman, 2003)
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→ TMD and twist-3 approach to spin/azimuthal asymmetries intimately connected



• PPMEs were also used/discussed for parton fragmentation

(Koike et al., 2001, ... / Boer, Mulders et al., 2003, ...)

• But, mere existence of PPMEs (GPMEs) for fragmentation became unclear

– Existence of GPMEs related to universality of TMD fragmentation:

if TMD fragmentation universal than GPMEs for fragmentation vanish

(Boer, Mulders, Pijlman, 2003)

– T-odd TMD fragmentation functions universal in SIDIS vs e+e− annihilation

(spectator model analysis)

(Metz, 2002)

– TMD fragmentation functions universal (spectator model analysis)

(Collins, Metz, 2004)

– Collins function universal in H1H2 → πjetX (spectator model analysis)

(Yuan, 2007, 2008)

– GPMEs vanish in spectator model

(Gamberg, Mukherjee, Mulders, 2008)

– Collins function at high kT universal (fixed order pQCD analysis)

(Yuan, Zhou, 2009)

• Needed: model independent analysis of PPMEs for fragmentation



PPMEs for fragmentation

• Definition of 3-parton correlators (in light-cone gauge)
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Analogous for q̄gq̄ and ggg correlator

• PPMEs

– 1
z = 1

z′
soft gluon pole (GPME)

– 1
z′

= 0 soft fermion pole (FPME)



• Support properties of 3-parton correlators
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→ One has: p−i ≥ 0 , q−j ≥ 0
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→ Note: GPMEs vanish as soon as one spectator in |Y 〉 is massive



→ Exchange quark and gluon field, and insert complete set of states |Y 〉
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→ Note: FPMEs vanish as soon as one spectator in |Y 〉 is massive

→ What happens in the (academic) case of massless spectators ?



• (Academic) case: all spectators massless

→ Consider the matrix elements
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• In summary

→ Analysis implies:
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→ Result does not exclude PPMEs for parton distributions



Universality of TMD-fragmentation

• Why nontrivial ?
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– A priori different Wilson lines (TMDs) in different processes

– Time-reversal does not give a relation between different definitions

• Why important ?

– Prerequisite for combined analysis of data from SIDIS and e+e− → H1H2X

(and more complicated processes like H1H2 → πjetX)

(Efremov, Goeke, Schweitzer, 2006, ... / Anselmino et al., 2007, ...)

– In particular, prerequisite for first extraction of transversity

(Anselmino et al., 2007, ...)



• Generality of existing analyzes showing universality of Collins function and other

TMD fragmentation functions was doubted for 2 reasons:

– Spectator models (Note: also used in proof of qT -integrated Drell-Yan)

(Bodwin, 1984 / Collins, Soper, Sterman, 1985, 1988)

– Low order in perturbation theory

• Zeroth moment of TMD-correlator:
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→ D1(z), G1(z), H1(z) are universal



• First moment of TMD-correlator:

(Boer, Mulders, Pijlman, 2003 / Bomhof, Mulders, 2007)

∆
i[U ]
∂ (

1

z
) =

Z

d
2~kT k

i
T ∆

[U ]
(
1

z
,~kT)

= ∆̃i
∂(

1

z
) + C

[U ]
F π∆i

F (
1

z
,
1

z
)

→ Process dependence contained in calculable gluonic pole factors C
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→ Process dependent part given by GPMEs

→ Model-independent analysis of GPMEs shows (in particular) universality of
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Summary

• PPMEs for fragmentation vanish (model independent proof)

• PPMEs for fragmentation cannot generate SSAs in collinear factorization

• But, other twist-3 collinear fragmentation correlators can well do so

(Yuan, Zhon, 2009)

• Model-independent proof of universality of certain kT -moment of

TMD-fragmentation functions

• Analysis may be extended to higher kT -moments

(UV- and other divergences ?)


